Résumé des notions du chapitre 4

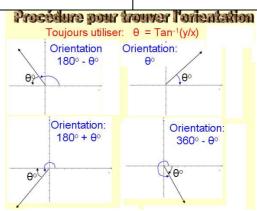
Notions chapitre 4	Formule	Résultat
Loi des sinus		
	$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$	
Loi des cosinus		
Zor des cosmas	$a^2 = b^2 + c^2 - 2bcCosA$	
Vecteur	$a - b + c - 2bc \cos A$ Définis par une norme (grandeur,	L' orientation (en degré) est définie
Vecteur	longueur), une direction et un sens.	par une direction et un sens.
Composante	(a, b)	Dans un plan cartésien, désigne le
o simposamo	a : composante horizontale	
	b : composante verticale	$\frac{\text{d\'ep} \text{lacement du vecteur.}}{\text{AB} \approx (\text{AB} \text{cos}(\theta^{\circ}), \text{AB} \text{sin}(\theta^{\circ}))}$
La norme		Utiliser la formule de la distance si
	$d(A,B) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	vous avez les coordonnées à
	· ·	l'origine et à l'extrémité du vecteur.
	$c^2 = a^2 + b^2$	Utiliser Pythagore avec la
	$ \overrightarrow{AB} = \sqrt{a^2 + b^2}$	composante.
T 11 /		
Équipollents	Identiques (Même norme, direction, sens)	
Opposés Colinéaires	Sens opposé (Même norme et directi Parallèles (Même direction)	on)
Orthogonaux	Parallèles (Même direction) Angle de 90°.	
Projection orthogonale	On projette de façon orthogonale un	$ AB' = AB \cos(\theta^{o})$
Trojection orthogonale	vecteur sur une droite. On trouve la	où AB' est le vecteur projeté
	norme de la projection à l'aide du	ou AB est le vecteur projete
	cosinus	
Relation de Chasles	On trouve le vecteur résultant à l'aide	$\rightarrow \rightarrow \rightarrow \rightarrow$
TOTAL DE CAMBILO	d'une combinaison de vecteur.	AB + BC + CD = AD
Orientation d'un vecteur	Le point de départ est sur une droite	À l'aide de la composante, il est
	horizontale à partir de l'origine du	possible de trouver le point associé
	vecteur.	dans un plan cartésien et de trouver
		l'angle à l'aide de sin, cos ou tan.
Construction géométrique.	Prendre le vecteur initial et placer	On fait la même procédure s'il y a
	l'origine du second vecteur sur	plusieurs vecteurs. Le vecteur
	l'extrémité du premier. Le vecteur	résultant sera ainsi défini par
	résultant est défini par l'origine du	l'origine du premier vecteur et
	premier vecteur et l'extrémité du	l'extrémité du dernier vecteur.
	second vecteur.	
Vecteur somme	La norme peut être trouvée de deux	
	façons :	
	1. Loi des cosinus	
No. 11. 11. 11.	2. À l'aide des composantes	
Multiplication d'un vecteur	u + u + u + u + + u = ku	$0\mathbf{u} = 0$
par un scalaire		k0 = 0
	(il y a une flèche sur tous les vecteurs	$1\mathbf{u} = \mathbf{u}$
	u)	(il y a une flèche sur tous les
		vecteurs u)

Résumé des notions du chapitre 4

Mania 1-4i ana ata Zhai ana a	C' (- 1)	<u> </u>
Manipulations algébriques	Si $u = (a, b) v = (c, d)$	
	ku = (ka, kb)	
	u + v = (a,b) + (c,d) = (a+c, b+d)	
	u - v = (a,b) - (c,d) = (a-c, b-d)	
	Commutativité $u + v = v + u$	
	Associativité $(u + v) + w = u + (v + w)$	
	(il y a une flèche sur tous les vecteurs	
	(u,v,w)	
Propriété par un scalaire	Associativité $(k_1k_2)u = k_1(k_2u)$	
T T T T T T T T T T T T T T T T T T T	Distributivité $k(u + v) = ku + kv$	
	$(k_1 + k_2)u = k_1u + k_2u$	
	$(R_1 + R_2)\alpha = R_1\alpha + R_2\alpha$	
	(il y a une flèche sur tous les vecteurs	
	(u,v)	
Combinaison linéaire	$w = k_1 u + k_2 v$	Si on connaît les composantes des
Comomaison infeare	$\mathbf{w} - \mathbf{k}_1 \mathbf{u} + \mathbf{k}_2 \mathbf{v}$	trois vecteurs, on utilise la méthode
	(:1 (1) -1 1 1	· · · · · · · · · · · · · · · · · · ·
	(il y a une flèche sur tous les vecteurs	d'addition pour trouver les deux
D 1 1 1 1 1	(u,v,w)	nombres réels.
Produit scalaire de deux	$\mathbf{u} \bullet \mathbf{v} = \mathbf{u} \ \mathbf{x} \ \mathbf{v} \ \mathbf{x} \ \cos \boldsymbol{\Theta}$	Le produit scalaire de deux vecteurs
vecteurs		orthogonaux est nul (0).
	θ est l'angle formé par les deux	
	vecteurs	Force(N) x Déplacement (m) x
		Cos(angle) = Travail(J)
	Si on connaît les composantes	
	u=(a, b) v=(c, d)	
	$\mathbf{u} \bullet \mathbf{v} = \mathbf{ac} + \mathbf{bd}$	
	(il y a une flèche sur tous les vecteurs	
	(u,v)	
Propriété du produit scalaire	Commutativité u • v = v • u	
	Associativité $k_1 u \bullet k_2 v = k_1 k_2 v$	
	Distributivité $u \bullet (v + w) = u \bullet v + u \bullet w$	
	(il y a une flèche sur tous les vecteurs	
	(u,v,w)	
		zauma Pasia ababiaa

Composante: (a, b) ou (x, y)

Pour trouver Tan⁻¹(y/x), toujours prendre les valeurs positives de x et y.



Sylvain Lacroix 2009-2010